

Batch Processing for Large Scale Assessments (HARP Regional Data Integrator)

Presented to:
USEPA Region 5
July 15, 2003

Presented by:

Jeff Dillingham, Ph.D.

Dillingham Software Engineering, Inc.

La Jolla, CA

858-551-8526

Email: Jeff@DillinghamSoftware.net

Dillingham Software Engineering, Inc.

What is HARP?

"Hot Spots Analysis and Reporting Program"

HARP integrates all of the data management, dispersion and risk analysis functions required for statewide air quality management into a single windows-based program.

Four Flavors of HARP

Health Table Help

Analysis Extent Overlay Results GLC Data File registration

Grid spacing (m) 1000

Tile size (m) 10000

Num Tiles X

Title (up to 16 characters, no blanks) Ventura

Show only active records

ONROAD

LARGE

0201 56 SCC VEN 1006 0201 56 SCC VEN 1006 0201 56 SCC VEN 1006

0201_56_SCC_VEN_1006

0201_56_SCC_VEN_1006

0201_56_SCC_VEN_1006

0201_56_SCC_VEN_1006

HARP Desktop/Framework

5.95E-05 -1.00E+00

4.61E-05 -1.00E+00

4.58E-05 -1.00E+00

4.37E-05 -1.00E+00

4.27E-05 -1.00E+00

4.15E-05 -1.00E+00

4.15E-05 -1.00E+00

3.77E-05 -1.00E+00

3 43E-05 -1 00E+00

-1.00E+00

-1 DOE+DO

-1.00E+00

-1 00E+00

-1 00E+00

-1 00E+00

-1.00E+00

1.00E+00

HARP RDI/GLC Overla

Refresh Display

ources in impact area (242 items) GEOID_STK

SCOS_UAM_EXONROAD_1603

0201 56 SCC VEN 1006 26

SCOS_UAM_ALL_1503

ONROAD_CALINE_VEN_25_PARTA ONROAD ONROAD_CALINE_VEN_25_PARTB

70000

File Run Stop Exit

4.44E-05

4.36E-05

3.98E-05

3 44E-05

3.41E-05

3.15E-05

3.12E-05

3.01E-05

2.86E-05

2.86E-05

2.79E-05

2.79E-05

2.76E-05

2.69E-05 -1.0

Files Step-Through Analysis Exp -AReceptors | Emissions | X/Q | G

852 CENSUS

833 CENSUS

165 GBID

285 GRID

261 GBID

286 GBID

235 GBID

811 CENSII

838 CENSUS 804 CENSUS

832 CENSU

262 GBID

189 GBID

287 GBID

812 CENSUS

813 CENSUS

259 GRID

217 GRID

216 GBID

310 GBID

166 GRID

288 GRID

Risk

834 CENSII

Receptor Type

emissions inventory database, dispersion analysis, risk analysis, integrated GIS; framework libraries

webHARP

Web-based interface to HARP

HARP Regional Data Integrator

batch processing of dispersion and risk on a large scale

HARP Express

Spreadsheet for streamlined input of data. Run HARP dispersion and risk analysis from Excel

Dillingham Software Engineering, mc.

Four Steps to Regional Analysis

A. Dispersion analysis

Compute X/Q on source-centric grids, one source at a time using RAIMI-like grids.

B. GLC

Compute ground level concentrations (GLCs) on sourcecentric grids for each source.

c. Overlay

GLCs from multiple sources are overlaid onto standard statewide grid.

D. Risk

Calculate risk on statewide grid.

Four Steps to Regional Analysis

Grids

Facility-centric grids for ISC

- Like RAIMI
- 100 m spacing out to 3 km
- 500 m spacing out to 10 km

State-wide grid for integration

- 1 or 2 km spacing for statewide reporting
- 100 meter spacing for local (interactive) analysis
- Teale-Albers projection

Why four steps?

Storage and computational efficiency

 You only compute and store dilution factors for receptors that are near each source

Incremental updates of cumulative risk

 If one source changes, you rerun ISC for that single source and skip to step C, which typically only has to be done on one or two tiles

Multiple risk scenarios

 To change risk scenarios or pathway receptors, you can skip directly to step D and just recompute risk

Representative Storage Requirements

Dilution factors

10,000 sources x 5400 receptors x 5 averaging times x 10 bytes (ASCII) = 2.7 Gb

GLCs on source-centric grids

Same as dilution factors x 50 chemicals = 135 Gb

GLCs on standard statewide 100 m grid

40,000,000 grid points x 50 chems x 5 averaging times x 5 source categories x 4 bytes (binary) = 200 Gb

Risk on standard statewide 100 m grid

- Many variations, for example: 40,000,000 grid points x 50 chemicals x 10 risk scenarios x 4 bytes (binary) = 80 Gb
- Note under some risk scenarios defined by OEHHA, risk from individual chemicals is not linearly additive

Step A - Dispersion

Step A - Dispersion

Step C - Overlay

Step D – Multipathway **Risk Analysis**

Step D – Multipathway **Risk Analysis**

Dillingham Software Engineering, Inc.

Facility-centric grid

State-wide grid

Tiles on state-wide grid

Web-based Reporting (CHAPIS-HARP)

